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Enantiospecific photochemical carbon skeletal rearrangement
of Morita—Baylis—Hillman products in water
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Abstract—Asymmetric carbon skeletal rearrangements of Morita—Baylis—Hillman products, o-hydroxymethylenones, under
photochemical irradiation in water are described, wherein the asymmetric induction mechanism is discussed in detail.

© 2004 Elsevier Ltd. All rights reserved.

During the past decades, thermal asymmetric synthe-
ses have advanced to a great extent.! In sharp con-
trast, only modest progress has been made for
asymmetric photochemical syntheses, for which circular
polarized light (CPL) or chiral sensitizers have been
employed.? Quite recently, y-cyclodextrin (y-CD)? has
been used as a chiral supercage* to give 51% ee in
the photochemical dimerization of anthracenecarboxy-
lic acid under high pressure at low temperature.” We
have reported the photochemical carbon skeletal
reorganization® of the Morita—Baylis—Hillman prod-
uct,” involving the C,-symmetric dihydroxytrimethyl-
enemethane ((OH),-TMM) as a common intermediate®
(Eq. 1). This result suggested to us that the asymmet-
ric desymmetrization’ of the C,-symmetric (OH),-
TMM intermediates by matched C,-symmetric chiral
controllers, in the presence or absence of a chiral
supercage, could provide an asymmetric route to the
photochemical synthesis of 1,4-dicarbonyl com-
pounds.'® The enantiospecific carbon skeletal rear-
rangement through ternary complex of (OH),-TMM
with C,-symmetric chiral controllers and a chiral
supercage (y-CD) in water!! is the subject of this com-
munication.
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The Morita—Baylis—Hillman product, a-hydroxyethyl-
enone 1, was irradiated by a high-pressure mercury lamp
in benzene for 8h, in the presence of chiral molecules
such as C;-symmetric chiral diamines and diols, to give
1,4-dicarbonyl compounds with a-aryl functionality,
otherwise difficult to obtain.'> However, only low levels
of enantioselectivities and chemical yields were obtained
with a variety of C,-symmetric chiral controllers such as
(S,S)-diaminocyclohexane (23%, 13% ee, the highest
enantioselectivity obtained therewith (1equiv rather
than 0.5 or 2equiv)), (S,S)-diphenylethylenediamine
(DPEN)" (19%, 3% ee), and diethyl tartrate (30%, 4%
ee). When CDs were employed as chiral supercages in
water, y-CD gave almost quantitative yield (93%) but
only 2% ee. It is noted here that among cyclodextrins,
only y-CD effectively promotes the reaction in water.
o- and B-CD could not form any inclusion complex with
1 and hence only low yields was obtained (38%, almost
the same without CD). y-CD was found to significantly


mail to: kmikami@o.cc.titech.ac.jp

6134 K. Mikami et al. | Tetrahedron Letters 45 (2004) 6133-6135

facilitate the photochemical carbon skeletal rearrange-
ment to give 1,4-dicarbonyl compound 2 in higher (64%)
isolated yield within 3h (20% in the absence of y-CD).
Therefore, only 26% of starting material 1 was recovered
even after 3h (42% recovery without y-CD). Retarda-
tion of the olefin isomerization was also observed (9%
instead of 19% without y-CD). Other Morita—Baylis—
Hillman products also gave much higher isolated yields
(79%: R =0-MeOPh; 49%: R =iso-Pr) when the reac-
tion was carried out in the presence of y-CD.

Although the highest enantioselectivity was obtained
with diaminocyclohexane in the absence of y-CD, the
combined use gave only low yield and enantioselectivity
(Eq. 2). Because diaminocyclohexane could not be in-
cluded into the chiral supercage y-CD in sharp contrast
to DPEN. The use of (S,S)-DPEN with y-CD afforded
both higher yield and enantioselectivity (45%, 46% ee
R)'* as compared with those obtained in the absence of
v-CD (19%, 3% ee). Indeed, (S,S)-DPEN did form an
inclusion complex with y-CD. Since the recovered sub-
strate was 20% ee (R), the relative reactivity between (.S5)-
and (R)-1 was calculated to be 3.3."
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The enantiospecific carbon skeletal rearrangement in the
present asymmetric photochemistry of enantiopure 1
was then investigated by changing the chirality of
DPEN.™ A significantly high enantiospecifity was ob-
served (Scheme 1); (R)-substrate 1, in combination of
(S,S)-DPEN and y-CD, provided 90% (R)-selectivity for
1,4-dicarbonyl compound 2. This 90% (R)-selectivity
was significantly increased from 64% (R)-selectivity ob-
tained without DPEN. By contrast, (S)-substrate 1 with
(R,R)-DPEN and y-CD provided the opposite (S)-2
enantiomer in 87% selectivity. In the absence of DPEN,
(R)- and (S)-1 enantiospecifically gave (R)- and (S)-2,
respectively, though in low level of enantiomeric excess
(28% ee and 36% ee). These results suggest the impor-
tance of ternary complex formation with DPEN and CD
in attaining high enantiospecificity. Indeed, the mixture
of substrate (R)-1 with (S,S)-DPEN and y-CD in water
gave a precipitate, which could be removed by filtration;
further extraction with ethyl acetate of the filtrate
afforded three separated fractions, composed of 1,
DPEN and y-CD (1:1:1).

The chiral recognition through triple binding of 1 with
DPEN in the chiral supercage, y-CD bearing chiral
secondary hydroxy groups is thus effective for the
enantiospecific carbon skeletal rearrangement (Fig. 1).'°
The use of (S,S)-DPEN induced the changeover of the
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Figure 1.

sense of enantioselectivity of (S)-1 to give (R)-2 albeit in
low selectivity (54% R; cf. 68% S without DPEN).
Furthermore, the geometrical isomer (E)-1 also provides
only low (25% ee) enantioselectivity due to its mis-
matched geometry for the relatively inflexible bucket-
shaped CD.

In summary, we have uncovered the enantiospecific
carbon skeletal reorganization of the Morita—Baylis—
Hillman product. Through triple binding by C,-sym-
metric chiral DPEN controller in chiral y-CD supercage
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in water, the asymmetric route has thus been set for the
photochemical synthesis of 1,4-dicarbonyl compounds.
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