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Letters
Enantiospecific photochemical carbon skeletal rearrangement
of Morita–Baylis–Hillman products in water
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Abstract—Asymmetric carbon skeletal rearrangements of Morita–Baylis–Hillman products, a-hydroxymethylenones, under
photochemical irradiation in water are described, wherein the asymmetric induction mechanism is discussed in detail.
� 2004 Elsevier Ltd. All rights reserved.
During the past decades, thermal asymmetric synthe-
ses have advanced to a great extent.1 In sharp con-
trast, only modest progress has been made for
asymmetric photochemical syntheses, for which circular
polarized light (CPL) or chiral sensitizers have been
employed.2 Quite recently, c-cyclodextrin (c-CD)3 has
been used as a chiral supercage4 to give 51% ee in
the photochemical dimerization of anthracenecarboxy-
lic acid under high pressure at low temperature.5 We
have reported the photochemical carbon skeletal
reorganization6 of the Morita–Baylis–Hillman prod-
uct,7 involving the Cs-symmetric dihydroxytrimethyl-
enemethane ((OH)2-TMM) as a common intermediate8

(Eq. 1). This result suggested to us that the asymmet-
ric desymmetrization9 of the Cs-symmetric (OH)2-
TMM intermediates by matched C2-symmetric chiral
controllers, in the presence or absence of a chiral
supercage, could provide an asymmetric route to the
photochemical synthesis of 1,4-dicarbonyl com-
pounds.10 The enantiospecific carbon skeletal rear-
rangement through ternary complex of (OH)2-TMM
with C2-symmetric chiral controllers and a chiral
supercage (c-CD) in water11 is the subject of this com-
munication.
* Corresponding author. Tel.: +81-3-5734-2142; fax: +81-3-5734-2776;

e-mail: kmikami@o.cc.titech.ac.jp
� Present address: Department of Applied Chemistry and Biotechnol-

ogy, Faculty of Engineering, Chiba University, Yayoicho 1-33,

Inage-ku, Chiba, 263-8522, Japan.

0040-4039/$ - see front matter � 2004 Elsevier Ltd. All rights reserved.

doi:10.1016/j.tetlet.2004.06.056
R

O OH

H

R

OH OH OHOH

R

RO

O

O

R

H

O
+

PR3,
NR3 Morita-Baylis-Hillman

(OH)2-TMM

*

*

*hν

up to 66% Isolated yield
Φ = ca. 0.1

ð1Þ

The Morita–Baylis–Hillman product, a-hydroxyethyl-
enone 1, was irradiated by a high-pressure mercury lamp
in benzene for 8 h, in the presence of chiral molecules
such as C2-symmetric chiral diamines and diols, to give
1,4-dicarbonyl compounds with a-aryl functionality,
otherwise difficult to obtain.12 However, only low levels
of enantioselectivities and chemical yields were obtained
with a variety of C2-symmetric chiral controllers such as
(S,S)-diaminocyclohexane (23%, 13% ee, the highest
enantioselectivity obtained therewith (1 equiv rather
than 0.5 or 2 equiv)), (S,S)-diphenylethylenediamine
(DPEN)13 (19%, 3% ee), and diethyl tartrate (30%, 4%
ee). When CDs were employed as chiral supercages in
water, c-CD gave almost quantitative yield (93%) but
only 2% ee. It is noted here that among cyclodextrins,
only c-CD effectively promotes the reaction in water.
a- and b-CD could not form any inclusion complex with
1 and hence only low yields was obtained (38%, almost
the same without CD). c-CD was found to significantly
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facilitate the photochemical carbon skeletal rearrange-
ment to give 1,4-dicarbonyl compound 2 in higher (64%)
isolated yield within 3 h (20% in the absence of c-CD).
Therefore, only 26% of starting material 1 was recovered
even after 3 h (42% recovery without c-CD). Retarda-
tion of the olefin isomerization was also observed (9%
instead of 19% without c-CD). Other Morita–Baylis–
Hillman products also gave much higher isolated yields
(79%: R¼ o-MeOPh; 49%: R¼ iso-Pr) when the reac-
tion was carried out in the presence of c-CD.

Although the highest enantioselectivity was obtained
with diaminocyclohexane in the absence of c-CD, the
combined use gave only low yield and enantioselectivity
(Eq. 2). Because diaminocyclohexane could not be in-
cluded into the chiral supercage c-CD in sharp contrast
to DPEN. The use of (S,S)-DPEN with c-CD afforded
both higher yield and enantioselectivity (45%, 46% ee
R)14 as compared with those obtained in the absence of
c-CD (19%, 3% ee). Indeed, (S,S)-DPEN did form an
inclusion complex with c-CD. Since the recovered sub-
strate was 20% ee (R), the relative reactivity between (S)-
and (R)-1 was calculated to be 3.3.15
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The enantiospecific carbon skeletal rearrangement in the
present asymmetric photochemistry of enantiopure 1
was then investigated by changing the chirality of
DPEN.14 A significantly high enantiospecifity was ob-
served (Scheme 1); (R)-substrate 1, in combination of
(S,S)-DPEN and c-CD, provided 90% (R)-selectivity for
1,4-dicarbonyl compound 2. This 90% (R)-selectivity
was significantly increased from 64% (R)-selectivity ob-
tained without DPEN. By contrast, (S)-substrate 1 with
(R,R)-DPEN and c-CD provided the opposite (S)-2
enantiomer in 87% selectivity. In the absence of DPEN,
(R)- and (S)-1 enantiospecifically gave (R)- and (S)-2,
respectively, though in low level of enantiomeric excess
(28% ee and 36% ee). These results suggest the impor-
tance of ternary complex formation with DPEN and CD
in attaining high enantiospecificity. Indeed, the mixture
of substrate (R)-1 with (S,S)-DPEN and c-CD in water
gave a precipitate, which could be removed by filtration;
further extraction with ethyl acetate of the filtrate
afforded three separated fractions, composed of 1,
DPEN and c-CD (1:1:1).

The chiral recognition through triple binding of 1 with
DPEN in the chiral supercage, c-CD bearing chiral
secondary hydroxy groups is thus effective for the
enantiospecific carbon skeletal rearrangement (Fig. 1).16

The use of (S,S)-DPEN induced the changeover of the
sense of enantioselectivity of (S)-1 to give (R)-2 albeit in
low selectivity (54% R; cf. 68% S without DPEN).
Furthermore, the geometrical isomer (E)-1 also provides
only low (25% ee) enantioselectivity due to its mis-
matched geometry for the relatively inflexible bucket-
shaped CD.

In summary, we have uncovered the enantiospecific
carbon skeletal reorganization of the Morita–Baylis–
Hillman product. Through triple binding by C2-sym-
metric chiral DPEN controller in chiral c-CD supercage
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in water, the asymmetric route has thus been set for the
photochemical synthesis of 1,4-dicarbonyl compounds.
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